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Linear Versus Quadratic Amplitude Feedback in Active Control

of Compressor Rotating Stall

Nikos Markopoulos,* Yedidia Neumeier,” J. V. R. Prasad,* and Ben T. Zinn®
Georgia Institute of Technology, Atlanta, Georgia 30332-0150

Several issues that have been overlooked or only partially addressed in previous literature related to the active
control of compressor rotating stall are clarified. This is accomplished via a detailed local stability analysis of the
rotating stall inception point and the locally branched unstalled and stalled equilibria. The analysis is based on the
first-term Galerkin approximation of the Moore-Greitzer model (Moore, F. K., and Greitzer, E. M., “A Theory of
Post-Stall Transients in Axial Compressor Systems, Part 1, Development of Equations,” Journal of Turbomachinery,
1986), and it is valid for an arbitrary compressor map and a parabolic throttle characteristic. It is generically
performed for a rather large class of throttle feedback control laws. Each such law is proportional to the rotating
stall amplitude, raised to a strictly positive exponent. The proportionality constant is a nonnegative feedback gain.
It is shown that linear feedback renders the rotating stall inception point and the neighboring stalled branch
locally asymptotically stable for any value of the feedback gain. Quadratic feedback on the other hand represents
a limiting case of control effectiveness and can at best lead to conditional local stability; that is, it can render
the stall inception point and the neighboring stalled branch locally asymptotically stable only for sufficiently high
values of the feedback gain. Finally, sublinear feedback, namely, feedback with an exponent less than unity, not
only unconditionally stabilizes the stall inception point and the neighboring stalled branch, but also completely
smooths out any transition to rotating stall. These results extend and in some places contrast previous work on the
subject that has dismissed such linear or sublinear feedback and concentrated mainly on quadratic feedback as a

viable means of controlling compressor rotating stall.

Nomenclature

A = rotating stall amplitude

a;, b;,c; = auxiliary constants, defined (fori =1, 2, 3)
in Egs. (21-23)

C;, D; = auxiliary constants, defined (fori =1, 2)
in Egs. (57) and (58)

E = auxiliary variable, equal to A?

F(®,A) = first Moore-Greitzer integral, Eq. (6)

G(®, A) = second Moore-Greitzer integral, Eq. (7)

h,w = functions representing the center manifold,
Eqgs. (43), (44), (46), and (47)

J = Jacobian matrix or its particularelement (as denoted
by subscript), Egs. (38), (64), and (74)

k = feedback gain, Eq. (10)

Keri = critical value of k, Egs. (33) and (34)

L = Lyapunov function, Eq. (56)

M = positive constant from Moore-Greitzer theory®

m = constantrepresenting the mass of the air enclosed
in the compressor cavity

N, = auxiliary constant, Eq. (76)

p = strictly positive feedback exponent, Eq. (10)

Q(d, A) = generating function for F (P, A) and G(D, A),
Appendix B, Eq. (B1)

S = generalized throttle valve area (control)

t = time

Uy = infinitesimal throttle valve area disturbance
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14 = constant characterizing the plenum volume

X = perturbationin ®, measured from the stall
inception point, Eq. (16)

X2 = perturbationin A P, measured from the stall
inception point, Eq. (16)

X3 = perturbationin A, measured from the stall
inception point, Eq. (16)

V3 = transformed state, see Eq. (24)

o;, B,v; = auxiliary constants (i =1, 2) defined in Egs. (54)
and (55)

AP = pressurerise across the compressor cavity

& fix = functions representing higher-order terms,
Eqgs. (18-20) and (25-27)

§gix = functions representing higher-order terms,
Egs. (51-53)

n,u,v = coefficients of characteristic equation, Egs. (39)
and (66)

0 = azimuth angle

A = characteristicequation variable, Egs. (39), (65),
and (66)

& = nondimensional variables corresponding to
x; (fori =1, 2, 3), Egs. (49) and (50)

T = nondimensional time, Eq. (49)

D = circumferentially averaged axial flow speed
through the compressor cavity, Eq. (5)

¢ = axial velocity componentof flow through the
compressor cavity

Y = compressor blade aerodynamic force characteristic

Subscripts

e = equilibrium state other than the stall inception point

W etc. = derivativesof W(¢) with respectto ¢

0 = equilibrium state at the stall inception point

I. Introduction

OMPRESSORS are routinely used in processes involving
pressurized fluids. In axial compressors the kinetic energy of
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a set of rotating airfoils is imparted to the fluid moving parallel to
the rotation axis. Certain aerodynamic instabilities in compression
systems manifest themselves as the phenomenon of compressor ro-
tating stall (RS). This is a two-dimensional flow oscillation that in-
volves a circumferentially rotating partial flow blockage. It results
in a loss of compression system performance and operating effi-
ciency. The conventional approach of addressing RS is to constrain
compressor operation to a stable region at a safe margin from the
stall inception point (SIP). This represents a loss of opportunity of
compressor performance. Recent approaches are aimed at reducing
or eliminating this stall margin through the use of active control.
Most recent active control strategies':? are based on low-order
approximations of the Moore-Greitzer model* (MG). This con-
sists of a set of nonlinear partial differential equations with periodic
boundary conditions. Using a first-term Galerkin approximation of
MG, previous studies™® have established a qualitative match be-
tweendynamicstructureand experimentalresults. Nonlinearcontrol
schemes with control proportionalto the square of the RS amplitude
have been proposed and analyzed, theoretically,” numerically® and
experimentally’ by combining nonlinear dynamics and bifurcation
theory.!®!! In Ref. 7, a control law with linear terms, in addition to
quadratic and cubic terms, has been initially assumed in the general
development;the coefficients of the linear terms have been taken as
zero to facilitate the subsequent stability analysis. In particular, to
our knowledge, a detailedinvestigationof the effect of more general
control laws on the local stability of the SIP so far has not been car-
ried out in a systematic way. This study is aimed at filling this void
by consideringa general representationof RS feedback control to be
proportional to a nonnegative power of RS amplitude. Section VII
supplies a quick review of all of the results shown in this paper.

II. Compressor Model

The model that we examine, giving rise to the RS instability, is
the first-term Galerkin approximation of the MG.? We will refer to
it simply as the MG. It is described by

2r

do 1 . AP
—_ = Y(® + Asin6)do — — (1)
dr 2zm J, m
d(AP 1
(&7 =—(o - 5VAP) )
dr 14
A M (7
—_— = Y(® + Asin0)sin0do (3)
dr 2z J,

These equations are based on several assumptions and approxi-
mations. At the compressor cavity (see Fig. 1) the Mach number is
assumed to be low, and so the airflow is modeled as incompressible ?
Compressibility effects are taken into accountat the plenum.? At the
cavity the flow is further assumed to be purely axial, but not nec-
essarily uniform.? It is described by an axial velocity component
¢ (0, t) that varies along the circumference. The first harmonic of
$(0, t) with respect to a properly chosen reference frame® is given
by

¢(0,1) =D(t) + A(t)sin 0 4)

where @ is the average value of ¢ along the circumference,

1 2
(1) =2—ﬁ/ ¢(0,1)do ®)
0

I\
-

Inlet Plenum

Fig. 1 Schematic model of a compressor.

and A is the amplitude of the velocity perturbation due to the RS.
From Eq. (3), zero A at any time implies zero A at all times. There-
fore, as A evolves in time, it can never change sign. It can then
always be taken as nonnegative. The aerodynamic force per unit
cross-sectional area of the cavity, developed by the blades, is®

1 2
F(@®, 4) = / W (D + Asin6) do ©)
0

where W(¢) is the compressorblade aerodynamic force characteris-
tic. The acceleration the air experiencesin the cavity is equal to the
difference between the force per unit cross-sectionalarea F(®, A)
and the pressurerise A P across the cavity, divided by a characteris-
tic positive constant m representing the mass of the air enclosed in
the cavity. This leads to Eq. (1). The rate of change of A P is fixed
by the balance between the flow incoming to the plenum from the
cavity and the flow outgoing from the plenum through the throttle.
A parabolic throttle characteristic then implies Eq. (2). V is a pos-
itive constant characterizing the plenum volume, and S represents
a generalized throttle valve area. Finally, Eq. (3), characterized by
the integral

1 2r
G(®, A) = — Y(D + Asin0)sin6do 7
2z J,

is just a prediction of the MG® concerning the dynamics of the RS
amplitude. M in Eq. (3) denotes a positive constant that depends on
compressor system parameters such as geometry, etc.

III. Operation at or near the SIP

From now on, S will play the role of a control variable. Figure 2
shows qualitatively,in the plane of A P, @, the locus of equilibriafor
a typical compressor model, for constant S. Setting the right-hand
sides of Egs. (1) and (3) to zero results in the branches abdsghr and
befdlkes. The first is the unstalled branch of equilibria (USB). On
it, A is zero. The second is the stalled branch of equilibria (SB).
On it, A is nonzero. Setting the right-hand side of Eq. (2) to zero,
with constant S, results in a parabolic throttle characteristic. Sev-
eral such characteristics,correspondingto different values of S, are
shown in Fig. 2. The intersectionof a throttle characteristicand the
SB or USB defines a possible operation point. For constant S, bold
dashed lines show unstable operation points, whereas bold solid
lines show stable operation points. As § is decreased, the throttle
characteristicshifts from ohm to oegn to oksp, and the stable opera-
tion point shifts from curve h to curve g to curve s. Point s is the SIP.
Under operation with no disturbances at SIP, A is identically zero,
whereas A P is a maximum. If S is decreased beyond its SIP value
the stable operation point jumps to the SB, to the left of point k.
Thus, during operation under constant S at SIP, an arbitrarily small
disturbance in § is enough to throw the compressor into the RS

AP

0 [}

Fig. 2 Qualitative locus of equilibrium points in the AP vs @ plane
for a typical compressor under no control, together with four throttle
characteristics.
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Y
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b . s

Fig. 3 Qualitative bifurcation diagram for the equilibrium values of
A vs uyz under no feedback control (k = 0).

regime (point k). Decreasing S further moves the stable operation
pointtoward 1. Increasing S moves the stable operationpoint toward
pointe and then point g, giving rise to the hysteresisloop skegs. The
aim is to vary S to stabilize the compressorat an equilibriumpointof
Eqgs. (1-3) that lies on the USB at or near the SIP. Note that varying
S does not affect the SB or USB in Fig. 2. It only affects the stabil-
ity of points on these branches (redistributing the solid and dashed
lines). The SIP will be denoted by the subscript0. Itis characterized

by
Y'(@y) =0, Y'(Dg) < 0 (8)

For a steady equilibrium at SIP the right-hand sides of Egs. (1-3)

must identically equal zero,
Dy =So/AP (9)

The equilibriumstates @, A Py, and A, and the required control
So at SIP are fixed from Eqs. (8) and (9). To stabilize the compressor
at or near the SIP, we will assume that the control S is always given
by the sum

S =S, +u, +kA?, k=0, p>0 (10)

Ay =0, APy =Y(Dy),

where S is the value of S required for operation at SIP, whereas
kAP is a feedback term that we use to render such an operation sta-
ble. The term u, represents a persistent, small, and constant throttle
disturbance, over which we have no control. Zero u, implies an
equilibrium at SIP. Small u, implies an equilibrium near the SIP.
Figure 3 shows the locus of equilibriumvalues A, of A as a function
of u, for atypical compressormodel and underno feedback (k =0).
Solid bold and dashed lines indicate stable and unstable equilibria,
respectively. Point s, correspondingto u; =0, denotes the SIP. The
RS instability arises because of the jump in the stable equilibrium
of A from O to a finite value as u, crosses 0. The axis A =0 rep-
resents the axisymmetric branch of equilibria (AB), characterized
by an absence of RS and axially symmetric flow through the com-
pressor[A, =0 and ¢ =®, in Eq. (4)]. The branch secb represents
the nonaxisymmetric branch of equilibria (NAB) for which RS is
present. From now on the AB or NAB will always refer to the plane
of A vsu,, whereas the SB or USB will always refer to the plane of
A P vs ®. We may use these terms interchangeablywhen no danger
of confusion is present. We will present a complete, local stability
analysis of the SIP and the neighboring equilibria on the USB and
SB for the full system of Eqs. (1-3), under a control S given by
Eq. (10), with infinitesimally small u,.

IV. Integral-Free Form for the MG Model®

We start by eliminating the variable 6 and expressing the inte-
grals in Egs. (6) and (7) as an infinite series. This greatly facilitates
all of the subsequent analysis. Practically, it can be accomplished
most efficiently using the contour integration method of complex
analysis.!* Thus, it is shown in Appendix A that, based on some
mild smoothness assumptions on the function ‘¥, the two Moore-
Greitzer® integrals [Egs. (6) and (7)], are equal to

00 \YZK(D A 2K
F(®D, A) =Z (Kz()2)<3> (11
k=0
o0 K‘sz—l(q)) A 2k —1
G(D,A) = Z W<E> (12)
k=1

Using these expressions and the control S of Eq. (10), the system of
Eqgs. (1-3) can be rewritten as

do Y2 () 2
EZ__ _Z (k)2 ( ) (13)

dAP) 1 i
" =V[<D—(S0+ud+kA’)\/AP] (14)
dA e @) (AT
E_M; (k)2 (E) (15)

Equations (13-15) are completely equivalent to Egs. (1-3) and
(10). Previous studies have implicitly imposed smoothness proper-
ties on '¥(¢) by working with specific functional forms. By far the
most common of these has been a cubic polynomial. Thus, Egs. (11)
and (12) represent a direct generalization on all such results. The
behavior of the MG about the SIP becomes very transparent under
Egs. (13-15).

V. Behavior About the SIP

Let x|, x,, and x; be perturbations in the states of the system
of Egs. (13-15), measured from their corresponding equilibrium
values at the SIP [see Eqgs. (8) and (9)]. Explicitly,

D =) + x,, AP =AP)+ x,, A=x; (16)

The control S [see Eq. (10)] can then be written as
S =8y +uy +kxj, k=0, p>0 an

Using these perturbations,rather than the original states, and tak-
ing the equilibrium conditions [Eqgs. (8) and (9)] into account, it can
be shown that the system of Egs. (13- 15) can be written equivalently
as

o = —a,x _alez —“3)532 + &8 fi(xy, x3) (18)
& px - b kx?)[bs — & &
o o T (”d + x3)[ 3~ le(xz)] + 6 f2(x2)
(19)
de _ . S IS S
& x3[ cixp +ox; +ex; + 8 f3(x1,x3)] (20)

where a;, b;, and c; are constants defined as

1 W (D Y (D
a, =—, a, = [¥(@y)| U)l, as =M @1
. 2m 4m
I S Do
by = . by = o = — 22
1 v 2 2V D, 3 VS 22
M \F” (1) M\ij/// (D
_ M| 2( ol z%, o =de, (23)

The functions &° f; and & f; in Egs. (18) and (20) represent an
infinite summation of terms in x; and x3 that are of order three or
higher. Similarly, the functions &' f>; and & f», in Eq. (19) represent
an infinite summation of terms in x, that are of order one and two or
higher, respectively. For the local stability analysis of Secs. VI-IX,
we need only the order of these functions but not their explicit
form. In Egs. (18-23) we used the absolute value of ¥ (®,), which
happens to be strictly negative at the SIP [see Eq. (8)]. We made
no assumptions, however, about the sign of the third derivative of
Y(¢) at the SIP. Thus, we would like to stress that, with the possible
exception of ¢, and c3, all of the constants defined in Egs. (21-23)
are strictly positive. In the stability analysis that follows it will be
important to remember that Eqs. (18-20) still represent the com-
plete MG, namely, they are equivalentto Egs. (13-15), which are in
turn equivalent to Egs. (1-3) and (10). Thus, although our stability
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analysis is a local one, our results will be valid for the full MG and
not for any approximation of it. During our analysis we will also
need the following. First, by introducing the transformation

P

ys =x7, dy; = px!'~'dx, (24)

the system of Egs. (18-20) can be written in the equivalent form

dx ) )
d_tl = —a|x; — ﬂllez - a3y32/’ +8fi (Xl, y;/’) (25)
dx
d_t2 =bix; = byxy — (uy + kY3)[b3 - 51f21(x2)] + & fn(x)
(26)
dys

o Py3[—6'1xl +oyy +esx] + 53f3(X1, y;l”)] 27
We will need this version of the MG whenever we linearize about
an equilibrium with 0 < p <1. Second, from Eq. (20), if x; is zero
at any time, then x; must be identically zero in —o0 < ¢ < oo Thus,
1) the trajectory of the system of Eqgs. (18-20) cannot cross over
the x; =0 plane, so that with no loss of generality x; can always
be taken as nonnegative,and 2) if x; is nonzero at any time, then in
the ensuing time evolution of the system of Egs. (18-20), x5 can go
to zero only asymptotically with 7. Similar statements also apply to
Eqgs. (25-27).

VI. Branching of Equilibria from the SIP

‘We now examine how the equilibriabifurcate from the SIP when
the control S [see Eq. (17)] contains anonzero, infinitesimal, throttle
disturbance u,. The equilibriumis at the SIP only when u, is zero.
When u, is nonzero, the equilibrium is determined by setting the
right-hand sides of Eqs. (18-20) equal to zero. Let x,, x5, and
X3, denote the equilibrium values of x;, x,, and x3, respectively,
when u, is nonzero. Then, from Eq. (20), we see that there are two
possibilities. The first corresponds to setting x3, =0, in which case,
a simple inspection of the right-hand sides of Eqs. (18) and (19)
reveals that for very small u, the equilibriumis given by

— 2 3
X9 = —alee/al + O(xle)

x5, =0 (28)

X, = bsuy/b; + O(u(zi),

where, O( ) denotes the (higher-) order symbol. This results in the
AB (see Fig. 3). The second possibility leads to the NAB (see Fig. 3)
and arises when

—C1X t C2X32e +o3x), + 8 (X, x3.) =0 (29)

le

In this case, the right-hand side of Eq. (20) is again zero. For in-
finitesimally small u,, Eq. (29) balances if

X, = c2x32()/c1 + O(x;) (30)

From Eq. (30) and the right-hand side of Eq. (18), a similar inspec-
tion shows that along such equilibria

Xy = —a3x32()/a1 + O(x;) (31)

Combining Egs. (30) and (31) with the fact that for such equilibria
the right-hand-side of Eq. (19) must also be zero, we conclude that
for very small u, the NAB is locally fixed by

ug = —kxi, + kcmx; + O(x”Jr 'xl ) (32)

3e 3e
where k. is just a constant given by
ke = (1/b3)(bycal ey + byaslay) (33)

Using Egs. (21-23), we find that k.,;; can be written in terms of more
direct compressor parameters as

So

kCl’il =S i O
8| (Do)

2 " 2
|:\y”’(q)o) + Sl (@) } (34)
D,

Depending on k and p, there can be three types of NAB (bifurca-
tions) for arbitrarily small u,. These, as well as the AB, are shown
qualitativelyon a x3, vs u, diagramin Figs. 4-7. Dashed lines show
unstable equilibria, whereas solid lines show asymptotically stable
equilibria. When k =0, or when k > 0 and p > 2, feedback has no
effect on the branching of equilibria. In this case, Eq. (32) becomes

Uy = kcmx; + O(x;) (35)

In practice, for a compressor exhibiting the RS instability, k.
is strictly positive. Then, as shown in Fig. 4, the bifurcation at SIP
is of the subcritical pitchfork type. When £ > 0 and p =2, namely,
for quadratic feedback, the qualitative features of the NAB depend
strongly on whether k > k. or k < kg,

u; = —(k — kcm)x; + O(x;) (36)

In this case, the bifurcation is of the subcritical pitchfork type for
k < keic (same as in Fig. 4) and of the supercritical pitchfork type
when k > k. (as in Fig. 5). For k =k, higher-order terms must
be examined to determine the type of the bifurcation. We will set

X3

e

Uy

Fig. 4 Qualitative bifurcation diagram near the SIP under no feed-
back control (k = 0).

X3

Ug

Fig. 5 Qualitative bifurcation diagram near the SIP under quadratic
(p =2) feedback with k > k.

X3,

e

Uy

SIP

Fig. 6 Qualitativebifurcation diagramnear the SIP under linear feed-
back (k >0 and p = 1).

X3¢

Uy

SIP

Fig. 7 Qualitative bifurcation diagram near the SIP under sublinear
feedback (k >0 and 0 <p <1).



1168 MARKOPOULOS ET AL.

aside that case because it is practically uninteresting. When k > 0
and 0 < p < 2, the quadratic term in Eq. (32) is subdominant, and
the bifurcationis locally described by

uy =—kx? + O(xé’: ' xi) 37)

Now, for k > 0 and 1 < p < 2, the bifurcation is still of the su-
percritical pitchfork type, and the NAB is perpendicularto the AB
at SIP (just as in Fig. 5). For k > 0 and p =1, on the other hand,
the bifurcation changes to a transcritical one, as shown in Fig. 6.
Finally, fork > 0and0 < p < 1, the NAB is tangentto the AB at SIP
as shown in Fig. 7. In this case, although different than thatin Fig. 6,
the bifurcationis still of the transcritical type. The local stability of
equilibria shown in Figs. 4-7 will be analyzed in Sec. IX.

VII. End Result

Before proceeding further we will provide a useful road map by
collecting together and stating clearly all of the details that we will
prove in Secs. VIII and IX. These are valid for the full MG and for
an arbitrary compressor map [Eqgs. (1-3) and (10), or Egs. (13-15),
or Egs. (18-20), or Egs. (25-27)]. The critical gain of the system,
kg, is defined in Egs. (33) and (34). By feedback we refer to the
control term kA”. The first four points are valid under no persistent
throttle disturbance (1, = 0) and pertain to the local stability of the
SIP.

1) When the feedback s off (k =0), the SIP for the corresponding
uncontrolled system is locally asymptotically stable if k.; < O and
unstable if k. > 0 (Sec. VIIL.A).

2) Under quadratic feedback (k>0 and p =2), the SIP is
locally asymptotically stable if k > k.; and unstable if k < kg
(Sec. VIIL.B).

3)Feedbackcontrolwithk > 0 and p > 2hasno effecton the local
stability of the SIP. Under such control the SIP is locally asymptot-
ically stable if k. < 0 and unstable if k.; > 0 (Sec. VIILC).

4) Under feedback control with £k >0 and 0 < p < 2, the SIP is
locally asymptotically stable for any value of k (Sec. VIILD).

The next five points are valid for operation under a persistent,
infinitesimally small, throttle disturbance u,, and they pertain to
the local stability of the axisymmetric (AB) and nonaxisymmetric
(NAB) branchesbifurcating from the SIP. @, here refers to the value
of @ at the corresponding equilibrium.

5) Throttle feedback control has no effect on the local stabil-
ity of an equilibrium lying on the AB. Such an equilibrium is lo-
cally asymptoticallystableif ¥/(®,) < 0 and unstableif ¥'(®,) > 0
(Sec. IX.A).

6) For the uncontrolled system (k =0) an equilibrium lying on
the NAB is locally asymptotically stable if k.; < O and unstable if
ki > 0 (Sec.IX.B).

7) Under quadratic feedback (k > 0 and p =2), an equilibrium
lying on the NAB is locally asymptotically stable if k > k. and
unstable if k < k;; (Sec. IX.B).

8)Feedbackcontrolwithk > 0 and p > 2hasno effecton the local
stability of an equilibrium lying on the NAB. Under such control
such an equilibrium is locally asymptotically stable if k. < O and
unstable if k., > 0 (Sec. IX.B).

9) Under feedback control with k > 0 and 0 < p < 2, an equilib-
rium lying on the NAB is locally asymptoticallystable for any value
of k. Moreover, for 0 < p < 1, the NAB is tangent to the AB at the
SIP. Thus, in this case, the NAB locally mimics the stable part of
the AB at the SIP (Sec. IX.B).

Note that points 1, 5, and 6 are well known, whereas points 2 and
7 have been partially addressed and uncoveredin previous work.”:8
Points 3, 4, 8, and 9 on the other hand represent our primary contri-
bution.

VIII. Stability for Operation at the SIP

We will first assume that in Egs. (18-20) u, is zero and perform
acomplete (k >0 and p > 0) local stability analysis for the SIP. For
the uncontrolledsystem (k =0), and fork > 0 and p =2, we will use
the center manifold (CM) theory. For k > 0 and 0 < p < 2, on the
other hand, we will resort to Lyapunov’s direct method. The reader

is referred to Verhulst,'* Perko,'* and Guckenheimer and Holmes!’
for the underlying theory.

Let us start by linearizing the MG about the SIP. We must
be careful to distinguish between two cases. If p > 1, then we lin-
earize the system of Egs. (18-20), whereas if 0 < p <1, then we
linearize the equivalentsystem of Egs. (25-27). We find that in both
cases the linearized system is governed by a Jacobian matrix given
by

0 —da; 0
Jo= b1 —by Jxy (38)
0 0 0
where the term Jy3 =0 when p>1 and Jy) =—kb; when

0 < p <1. Both cases lead to the characteristicequation
A+ A+ oA+ vy =0 (39)
whose coefficients are given by

mo = by, Ho =aiby, v =0 (40)

Because vy =0, whereas 1y and p are strictly positive,two eigen-
values have negativereal parts and one eigenvalueis zero. Thus, the
linearized approximationdoes not determine the stability of the full
nonlinear system. Because no eigenvalue has a strictly positive real
part, the flow of the system of Egs. (18-20) exhibits stable behavior
near the SIP, except perhaps in the CM.!3~' In this case the CM is
one dimensional. If we can find a local approximation for the CM,
valid near the SIP, we only need to study the flow locally in the CM
to study the local stability of the SIP.*~!* For k =0 (no feedback)
or k>0 and p =2, this is relatively straightforward. With no loss
of generality the CM is taken as

X =h(x3) = hy(x3) + xFhy(x3) (41)
Xy = w(x;) =wi(x3) + x5 wy(x3) (42)

where h, w, hy, h,, w,, and w, are functions of x3, with 2(0) =
w(0) =0, to be determined so that Eqs. (18) and (19) are identically
satisfied. To uncover the local behavior of these functionsabout the
SIP, we assume power series expansions, substitute in Egs. (18) and
(19), use Eq. (20) for the time derivative of x5, and match terms.
This works only when the CM is analytic at SIP, namely,'*~> only
when such an expansion about the SIP exists.

A. Stability of the Uncontrolled System (k = 0)

In this case, the feedback is off and the CM near the SIP is ap-
proximated as

X1 = h(x;) = =(byas/ bay)xi + O(x3) (43)
X, =w(x3) = —(a3/a1)x32 + O(xg) (44)

The local behavior of the flow in the CM is obtained by substituting
from Egs. (43) and (44) into Eq. (20),

dxs Crbskeit 3 4
E = (—bl >X3 + O(}C3) (45)

where k., was defined in Eq. (33). The coefficient ¢, b3/ b, is strictly
positive,and so the SIP for the uncontrolledsystemis locally asymp-
totically stableif k.; < O andunstableif k.; > 0. This proves point 1
of Sec. VII.

B. Stability Under Quadratic Feedback (k >0 and p =2)
In this case, the CM near the SIP is found as

x; = h(xs) = (bsk/b; — byaz/bya;)x; + 0(x33) (46)

Xy =w(x3) = —(as/ay)x; + O(x3) (47)
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whereas the flow in the CM near the SIP obeys

b
—_— = _<C;7_13>(k - kcrit)x33 + O(}C;‘) (48)

Thus, the SIP is locally asymptoticallystableif k > k. and unstable
if k < k. This proves point 2 of Sec. VII.

C. Stability for k >0 and p >2: Control Effectiveness

In this case, feedbackhas no effect on the local stability of the SIP.
The CM is given by expressionsidentical to Egs. (43) and (44). The
differenceis that the higher-orderterms are of order p if 2 < p < 3.
The flow in the CM is locally described by a differential equation
identicalto Eq. (45), the difference again being that the higher-order
terms are of order p + 1 if 2 < p < 3. Thus, under feedback with
k> 0and p > 2, the SIP is locally asymptotically stable if k.; < O
and unstableif ki > 0. This proves point 3 of Sec. VII.

D. Stability fork>0and 0<p<2

In this case we will use Lyapunov’s direct method rather than the
CM theory to show the stability of the SIP. To ease the analysis, we
first transform from the variables x;, x;, x3, and 7 to a new set &,
&, &, and 7,

T =byt, & =(pci/by)x, (49)
& = (paic, [b2)x, & = (pkaibsc, [3)x! (50)

Then Eqgs. (18-20) assume the following equivalent form:

d

d—il =-& - & — " +8g(4.847) (51)
déZ _ 61 62

e B& — & — & + 856 81(&) +678n(&) (52)
dé _ 2/p 2 53 1/p 33
= =5[-a g g+ Fu(6. 8] 63

where the constants o, @, B8, 7;, and ¥, are defined as
_ 1/
a, aé)bg 2p p
a =— =\ (54)
pc p2-rk2albic;™!

6-—p p 1/p
a b, b, “c bycs
path (ST i

2= p k2222
p?Pk*aibicy

The 8g termsin Egs. (51-53) correspondto the 5f terms of Eqs. (18-
20). For 0 < p <2, all of these terms are of higher order in the
variables &, &, and &; than the terms shown explicitly. Consider
now a function L, defined as

2
1 ¢ &
LG & &) =&+ Z; (D[él + 2+ Gk (56)
where D; and C;, 1 =1, 2, are constants given by

-1+ JT+4B _ —4B-3+3.T+48

D 4 S =T
(57)
b —-1-JT+4B c 48 +3+3T+4p
2 == > 2 =

N
(58)

The time derivativeof L, alonga trajectory of the system of Eqs. (51-
53), can be found by differentiating the right-hand side of Eq. (56)

with respect to 7 and by substituting from Eqs. (51-53). The result
is
dL B

1
— T — — 2__ 2_
dr 451 452

3
4p

where with HOT we refer to terms that are (for 0 < p < 2) of higher
order than the second. Note that the 8g terms in Egs. (51-53) con-
tribute only to the HOT part of dL/dr. Hence, they have no effect
on the local behaviorof dL/dz near the SIP. From Eq. (59) this local
behavioris seen to be rather simple: Because f is strictly positive,
dL/dz is locally negative definite about the SIP. More precisely, the
following may be said about L

F1) L(&,, &, &) is strictly positive for strictly positive & and
positive definite for & =0.

F2) For L, > 0 sufficiently small, in the (&}, &, &) state space
there exists a compact region B defined by L(¢;, &, &) <L, and
& =0, so that dL/drt is zero at (&, &, &) =(0, 0, 0) and strictly
negative at any other point in B. To this we add the details on x3
supplied in Sec. V, given now in terms of the variable &;.

F3) From Eq. (53), if &; is zero at any time, then & must be iden-
tically zero in —o < 7 < oo. Namely, the trajectory of the system
of Eqgs. (51-53) cannot cross over & =0, and so with no loss of
generality, & =0 always.

F4) If & > 0 at any 7, then in the ensuing evolution of Egs. (51-
53) & can go to zero only asymptotically with 7.

We can now show that the SIP is locally asymptotically stable.
Consider the behavior, of any trajectory of the system of Eqs. (51-
53), as 7 tends to infinity, that starts from within the region B (the
existence of which is guaranteed by item F2), with a nonnegative
&;. Then from item F3, only one among the following is true:

1) The starting value of &; is zero.

2) The starting value of & is strictly positive.

If item 1 is true, then from item F3, & stays identically at zero,
whereas from items F1 and F2 the rest of the system asymptotically
goes to the SIP. If item 2 is true, then from items F3 and F4 &; stays
strictly positive for any finite 7. In this case, from items F1 and
F2 the whole system asymptotically goes to the SIP. Therefore, for
0 < p <2 the SIP is locally asymptotically stable for any strictly
positive value of k. This proves point4 of Sec. VIIL.

£2 + HOT (59)

IX. Stability Under a Persistent Throttle Disturbance

We will now perform a complete (k >0 and p > 0) local stability
analysis for the equilibria on the AB and NAB near the SIP (small
uy). As in Sec. VI, we denote all of these equilibria using the sub-
scripte. We will use linearization of the MG about such equilibria.
The characteristic equation for the linearized system will have no
eigenvalues lying on the imaginary axis, and so such linearization
will be sufficient to determine stability.

A. Stability of the Axisymmetric Branch (AB)

From Egs. (13-15) the conditions for an equilibrium on the AB
are

A, =0, AP, =Y¥Y(D,), O, =S,/AP,, Se =80+ uy

(60)

We must distinguish between two cases. When p > 1, we linearize
Eqgs. (13-15) directly about the equilibrium. When, on the other
hand, 0 < p <1, then the feedback term kA? in Eq. (14) cannot
be linearized about A, =0. In this case, we use the transformation
E = A? and linearize the transformed system,

A0 AP 1 WD) EVP\
— = 4+ = _— 61
dr m m KZ; (k)2 2 (61)

dAapP) 1
— 7[cp —(So + ug + kE)yNAP (62)

00

dE P21 @) (EV\TT?
TZPME;W - (63)
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about the equilibrium. In both cases the Jacobian matrix associated
with the linearized system is expressed as

Y(D)/m —(1/m) 0
L= uv  —(s2/2ve,) I (64)
0 0 J33e

where Jy, =0 when p>1 and Jy, =—(k®,/VS,) when
0< p<l. Also, Jy3, =MY¥Y'(®,)/2 when p>1, and Js, =
pMY'(®,)/2 when 0 < p <1. The associated characteristic equa-
tion has a root at A = Js3,. Its other two roots are found from

S? ¥ (D, 1 S2Y(D,
AP+ | == - ( )Z+——#=O (65)
2V, m mV 2mV®,
For W/(®,) < 0, all three roots have strictly negative real parts. For
Y'(®,) >0, at least one root has a strictly positive real part. More-

over, this condition does not depend on k. This proves point 5 of
Sec. VIL.

B. Stability of the Nonaxisymmetric Branch (NAB)

To determine the stability of the NAB we proceed as follows.
The linearized approximation of the MG about an equilibrium on
the NAB is governed by a Jacobian matrix J, and a characteristic
equation:

B+t +ui+v, =0 (66)

The coefficients of this equation are continuous functions of #,. For
uy =0, the equilibriumis at the SIP, and these coefficients are given
by Eq. (40). For infinitesimally small u,, the same coefficients are
perturbed to

n. = b, + om, U, =ab, + éu, v, =6v  (67)
with on, du, and Sv denoting infinitesimal perturbations. Because
by >0anda,b; > 0,itfollowsthatn, > 0and 1, > 0 for sufficiently
small u,. The first column of the corresponding Routh table (see
Ref. 16) implies that the necessary and sufficient conditions for sta-
bility are , >0 and v, > O and (1,1, — v,)/n, > 0. Because n, > 0
and p, > 0 and v, is infinitesimal, these conditions are satisfied if
and only if v, > 0. Thus, we only need to check the sign of v,.
Note that v, is just the negative of the determinant of the Jacobian
matrix J,,

ve = —det(J.) (68)

To obtaindet(J,) write Egs. (13-15) by condensingthe MG integrals
[see Egs. (11) and (12)]:

4o _ i[F(qn, A) — AP] (69)
dt m
d(AP) 1 i
- = 7[cp — (So + ug + kA?) VA P] (70)
% =MG(®, A) (71)

An equilibrium on the NAB satisfies

G(®,, A,) =0, AP, = F(D,, A,), D, =S./AP,
(72)
S, = So + uy + kA? (73)

For compatibility with the linearization about the SIP [Eqgs. (38—
40)], we have to distinguishbetween the cases p > 1 and0 < p <1.

When p > 1,linearizationof Eqs. (69-71) aboutsuchan equilibrium

results in

1 /oF 1 1 {aF\ ]

m\ oD . m m\ 0A .
1 52 kpAl '@,

J, = — — P (74)

v 2V, VS,
G G

M| — 0 M| —

— a(D e aA e -

When 0 < p <1, Egs. (69-71) are transformed through E = A?.
Linearization then yields a similar Jacobian that we denote by /,. It
can be checked that J, and I, differ only in their third column. The
third column of /, is equal to the third column of J,, multiplied by

the factor
dA Al
— ) =— (75)
dE . p

Because this factor is strictly positive, the determinants of J, and I,
have the same sign. Thus, we only need one of them to determine the
sign of v,. Instead of v, we will check the sign of a similar constant,
N,, defined as

2mVS,®, 2mVS,®,
N, = (—) v, = —(—) det(J.) (76)
M M

Clearly, N, and v, have the same sign. Expanding the determinant
of J, in Eq. (74) we obtain

N, =(FoGs — FsGo)S? = 2pkA? " 'Go®? — 2G4 S, @, (77)

oG
oF oG
fa=Go= (ﬁ) - (an) 7

That Fy =G4 is shown in Appendix B. For an equilibrium on the
NAB, Egs. (16) and (17) read

where

q)e = (D(J + Xies APe = AP(J + X2es Ae = X3¢ (79)

SF = S(J +u,; + kxé: (80)

where x,,, x,,, X3., and u, are not independent, but vary according
to Egs. (30-32). If we expand N, [Eq. (77)] in x3, about the SIP,
the lowest-order terms of such an expansion will reveal the sign of
N, for infinitesimally small u,. The partial derivatives of ' and G
with respectto A and @ expand about the SIP as

oF P (D
Fy = (ﬁ) = —|¥"(Dy)lx,, + _i o)x; + HOT (81

oG [P (Do)| 3W"(Dy) ,
Gi=(Z) == o+ +HOT (82
‘ (aA)F 2 16 (82

Fy=Gg = 0Ly _ (29 _ (@) +HOT (83)
tTYe=\ea) T\eo) T 2

On the NAB, x,, and x;, are related by Eq. (30). By substitution
into Egs. (81-83), we find

FoGy — FAGo = —{[¥"(@y)]* /4}x} + HOT  (84)
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Finally, from Egs. (79), (80), (84), and (77), for an equilibrium on
the NAB arbitrarily close to the SIP, N, is

N, =2|W"(®g)|D}[(pk/2)x}, — keix3, | + HOT  (85)

Here k. is the constant defined in Eqs. (33) and (34). Recalling
that an equilibriumon the NAB arbitrarily close to the SIP is locally
asymptotically stable if and only if N, > 0, we have, depending on
k, p, four possible cases.

1) For the uncontrolled system (k =0), N, becomes

N, = =2|¥"(®g)|Dikerxi, + HOT (86)

Locally N, has opposite sign than k.. Thus, in this case, an equi-
librium lying on the NAB is locally asymptotically stable if ki < O
and unstableif k.; > 0. This proves point 6 of Sec. VII.

2) Under quadratic feedback (k > 0 and p =2), N, becomes

N, = 2% (@)|@2(k = k)2, + HOT 87)

In this case an equilibrium lying on the NAB is locally asymptoti-
cally stable if £ > k;, and unstable if k < k.. This proves point 7
of Sec. VIL.

3) When k > 0 and p > 2, locally the feedback term has no effect
on N,. Namely, N, behaves as in Eq. (86). Under such control, an
equilibrium lying on the NAB is locally asymptotically stable if
k. < 0 and unstable if k. > 0. This proves point 8 of Sec. VIL.

4) When k >0 and 0 < p < 2, then N, behaves as

N, = [¥"(®g)| 2 pkx?, + HOT (88)

Under such control an equilibrium lying on the NAB is locally
asymptotically stable for any value of k. Combined with Fig. 7 this
proves point 9 of Sec. VIL

X. Unifying Geometric Explanation
The results of Sec. VII can be unified under a single geometric
picture. Recall (Sec. III) that varying S does not affect the shape of
the USB or SB (Fig. 2). These are fixed by the right-hand sides of
Eqgs. (1) and (3). Varying S does affect, however, the equilibrium
implied by Eq. (2). For a control of the type we considered [see
Egs. (10) and (17)], this condition reads

Dy + xp, = (Sg + ug + kx} )/ APy + xs (89)

In the absence of RS, x3, is identically zero and the operating point
lies on the USB. From Sec. IX.A, both the shape and the stability
of points (other than points b and s in Fig. 2) on the USB remains
unchanged by any type of throttle control. Thus, locally, near the
SIP, the USB always looks like the branch usv in Fig. 8 [see second
of Eqgs. (28)]. The SB, on the other hand, locally, is just a straight
line, which from Egs. (30) and (31) is found as

XZe
S Xy

et
K
-
u \4
5
o
B

z

y

Fig. 8 Qualitative locus of unstalled (usv) and stalled (st) branches of
equilibria near the SIP, together with three different types (sx, sy, and
sz) of feedback throttle characteristics.

ac; P (D)

X = ==Xy, = ————1X1,

T 2P

This is shown by the straight line st in Fig. 8. Contrary to the

USB, the stability of operating points on the SB is strongly affected

by the particular type of throttle control. Keeping first-order terms

in the small quantities x;, and u,, locally about the SIP Eq. (89) can
be written as

xie = (83 /2@0)x2, + (kgo/ So)xt, + (®o/ Sp)ug (91

(90)

For operation on the SB, one can eliminate x3, by relating it to x,,
through Eq. (31). Then, Eq. (91) becomes

Sg 2‘”]{(1)0
Xie = T X2¢

D
o (m0)"? + Zug(92)
0

SolW" (Dy)| P2 So

Equation (92) can be viewed as a local feedback throttle characteris-
tic (LFTC). In the x,,x,, plane for u, =0, the LFTC passes through
the SIP. When u, < 0, then the LFTC shifts to the left. Figure 8
shows the shapes of the LFTC for all cases of feedback and for
uy; =0. When p > 2, or k =0, locally, the first term on the right-
hand side of Eq. (92) is dominant, and the LFTC is a straight line,
such as line sx or sy. Points 1, 3, 6, and 8 of Sec. VII lead to the
stability requirement that the inclination of this line relative to the
X, axis be less than the corresponding inclination of line st. Thus,
an LFTC of the form sx implies instability, whereas an LFTC of the
form sy implies stability. When k > 0 and p =2, the LFTC is still a
straightline, such as line sx or sy, but now the first two terms on the
right-hand side of Eq. (92) are of equal importance. Now, points 2
and 7 of Sec. VII lead to the same conclusion,namely, that an LFTC
of the form sx implies instability, whereas an LFTC of the form sy
implies stability. When on the otherhand £ > 0 and 0 < p < 2, then
only the second term on the right-hand side of Eq. (92) is locally
dominant, and the LFTC looks like the curve sz in Fig. 8. Now,
points 4 and 9 of Sec. VII imply stability for all such LFTCs. As
u4 shifts infinitesimally from u, =0 to u, < 0, the LFTCs sx, sy,
and sz in Fig. 8 shift infinitesimally to the left. After such a shift
only the LFTCs sy and sz still intersect the local part (line st) of the
SB. This leads to a general statement connecting all of the results
of Sec. VII to the behavior of the LFTC: The feedback control law
defined in Egs. (10) and (17) locally asymptotically stabilizes the
SIP and the neighboring part of the SB if and only if it results in an
LFTC for which the jump (in the A P vs @ plane of equilibria) that
leads to finite amplitude RS when S is reduced below its value at
the SIP is eliminated. The rate at which the LFTC sweeps by the SB
for decreasing, negative u, determines the shape of the NAB and
the types of the correspondingbifurcationsin Figs. 4-7.

XI. Conclusions

We presented a complete, analytical, local stability analysis for
the Moore-Greitzer model of compressor rotating stall about the
stall inception point and the neighboring part of the branch of the
axisymmetric and nonaxisymmetricbifurcated equilibria. Our anal-
ysis is valid for all throttle feedback control laws that are equal to
the rotating stall amplitude, raised to a strictly positive feedback ex-
ponent, and multiplied by a nonnegative feedback gain. We showed
that linear feedback reshapes and stabilizes the neighboring non-
axisymmetric branch and results in unconditional local asymptotic
stability for the stall inception point. Quadratic feedback on the
other hand represents a limiting case of local control effectiveness
and at best leads to conditional local stability, that is, it renders the
stall inception point and the neighboring nonaxisymmetric branch
locally asymptotically stable only for sufficiently high values of the
feedback gain. Our most important result is perhaps that sublinear
feedback,thatis, feedback with an exponentless than unity, notonly
unconditionallystabilizes the stall inception point and the neighbor-
ing nonaxisymmetric branch, but also it reshapes this branch so as
to locally mimic the stable nonaxisymmetric branch at the stall in-
ception point. These results extend and in some places contrast and
clarify previous work on this subject that has completely dismissed
such linear or sublinear feedback as a useful means of controlling
compressor rotating stall.
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Appendix A: Evaluation of the MG* Integrals
Using Contour Integration
Consider the two integrals appearing in Eqgs. (6) and (7). The
integration limits here suggest contour integration in the complex
plane along the unit cycle. Use a complex variable z, and define the
transformation
dz -z!

z :ew, do = ; sinf = % (Al)

where i is the imaginary unit. Then, the two integrals can be written

as
1 dz
F(D, A) = — v+ al = (A2)
27i unit circle Z
1 -z! —-z7'\d
G(®, A) = — ylo+al 2 (=)=
2mi unit circle 2i 2i Z
(A3)

Define two functions f(z) and g(z) by

_ -1
SN

2=z "\[{z-2z7"!
S w

If ¥ is free of singularities, the only singular point of f(z)/z or
g(z)/z withinthe unitcircleis z =0. Then F and G are the residues'?
of f(z)/z and g(z)/z at z =0, respectively. The residue!? of a func-
tion H(z) at a singular point z =z, is the coefficient of the term
1/(z — z;) in the Laurent series expansion of that function about
z =z,. By uniqueness,'” the Laurent series of H(z)/z about z =0
is the Laurent series of H(z) about z =0, multiplied by 1/z. Thus,
the residues of f(z)/z and g(z)/z at z =0 are the constant terms
in the Laurent series of f(z) and g(z) about z =0, respectively. To
evaluate these residues, write the ordinary Taylor series of ‘¥(¢)
about ¢ =®d. Using this series evaluate ¥ at ¢ =® + Asin6 and
substitutefor sin 0 from Eq. (A1). Then, the functions f(z) and g(z)
can be written as

f(2) =\y<q> +A

g(z) = w(qa +A

_ s \F"((D)(Z _ Z—l)nAn
fo) = Z; R (A6)
el N8 — ylyn+1pn
o=y = )((Zzi),,f ln), (A7)
n=0 :

Superscripts denote differentiation for ¥ and raise to power else-
where. Recall the binomial formula'”

(x =y = Z( D* ( ) "y (A8)

and expand the terms in the parenthesis (for each n) as

_ o h\n - _1\k n n—2x
(z—z7") _;( i <K>z (A9)
n+1
_ —lyn+1 n+1 n+1-2x
(z-27) Z( 1)( . ) (A10)

Substituting from Egs. (A9) and (A10) into Eqs. (A6) and (A7)
and summing the coefficients of similar powers in z, we obtain
two series, for f(z) and g(z), for which the (integer) powers of z
vary from —oo to +00. By uniqueness, these are the Laurent series
of f(z) and g(z) about z =0. From Eq. (A9), a constant term is

contributed to the Laurent series for f(z) each time n is even. This
is the term for which n =2k. It is equal to

P2R(D)(—1) A% (2K
Q2i*(2x)!  \

The sum of all such terms for k=0,1,2,...
f(2)/z about z =0 that in turn equals F. With!’

<2K>= Qo eo! (ALD)

K K!(2Kx — K)! (x!)?

, is the residue of

thisleadsto F(®, A) suppliedin Eq.(11). Similarly, from Eq. (A10),
a constant term is contributed to the Laurent series for g(z) about
z =0eachtimen + 1 is even. This is the term for whichn + 1 =2k,

and it is equal to
\FZK—I((D)(_I)KAZK—I 2K
2i)*(2x — 1)! K

The sum of all such terms for k=1, 2,3, ..., is the residue of
g(z)/z aboutz =0, which in turn equals G. Through Eq. (A11) this
leads to G(®, A) supplied in Eq. (12). The series representation
of these integrals is valid as long as certain obvious smoothness
properties on \¥(¢) are satisfied.

Appendix B: Generating Function for the MG? Integrals

The two MG integrals [Egs. (11) and (12)] can be generated from
a single function by partial differentiation. Let

00 \FZK—I iy A 2K
0w, 4 =) 2 <3> B1)
k=0

where for k¥ =0, characteristic ¥ ~!(®) denotes the indefinite inte-
gral of W(®). Then it is easy to show that F' and G are

0 0
F(®,A) = a%, G(D,A) = a—g (B2)

The partial derivativesof F' and G with respectto @ and A are, thus,
given by

OF 20 = wxri@) (A"
W 002 _; x)? \2 ®3)
G 20 k(2K — DY 1(@) (A7
T oA Z 2(x!)? 2 (B4)
OF 3G _ 0 S k¥x@) (AT
A 20  odoA _; (xkh2 \ 2 ®3)
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