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Linear Versus Quadratic Amplitude Feedback in Active Control
of Compressor Rotating Stall
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Several issues that have been overlooked or only partially addressed in previous literature related to the active
control of compressor rotating stall are clari� ed. This is accomplished via a detailed local stability analysis of the
rotating stall inception point and the locally branched unstalled and stalled equilibria. The analysis is based on the
� rst-term Galerkin approximationof the Moore–Greitzer model (Moore, F. K., and Greitzer, E. M., “A Theory of
Post-StallTransients in Axial Compressor Systems,Part 1,DevelopmentofEquations,”JournalofTurbomachinery,
1986), and it is valid for an arbitrary compressor map and a parabolic throttle characteristic. It is generically
performed for a rather large class of throttle feedback control laws. Each such law is proportional to the rotating
stall amplitude, raised to a strictly positive exponent. The proportionality constant is a nonnegative feedback gain.
It is shown that linear feedback renders the rotating stall inception point and the neighboring stalled branch
locally asymptotically stable for any value of the feedback gain. Quadratic feedback on the other hand represents
a limiting case of control effectiveness and can at best lead to conditional local stability; that is, it can render
the stall inception point and the neighboring stalled branch locally asymptotically stable only for suf� ciently high
values of the feedback gain. Finally, sublinear feedback, namely, feedback with an exponent less than unity, not
only unconditionally stabilizes the stall inception point and the neighboring stalled branch, but also completely
smooths out any transition to rotating stall. These results extend and in some places contrast previous work on the
subject that has dismissed such linear or sublinear feedback and concentrated mainly on quadratic feedback as a
viable means of controlling compressor rotating stall.

Nomenclature
A = rotating stall amplitude
ai , bi , ci = auxiliary constants, de� ned (for i = 1, 2, 3)

in Eqs. (21–23)
Ci , Di = auxiliary constants, de� ned (for i = 1, 2)

in Eqs. (57) and (58)
E = auxiliary variable, equal to Ap

F( U , A) = � rst Moore–Greitzer integral, Eq. (6)
G( U , A) = second Moore–Greitzer integral, Eq. (7)
h, w = functions representing the center manifold,

Eqs. (43), (44), (46), and (47)
J = Jacobian matrix or its particular element (as denoted

by subscript), Eqs. (38), (64), and (74)
k = feedback gain, Eq. (10)
kcrit = critical value of k, Eqs. (33) and (34)
L = Lyapunov function, Eq. (56)
M = positive constant from Moore–Greitzer theory3

m = constant representing the mass of the air enclosed
in the compressor cavity

Ne = auxiliary constant, Eq. (76)
p = strictly positive feedback exponent,Eq. (10)
Q( U , A) = generating function for F ( U , A) and G( U , A),

Appendix B, Eq. (B1)
S = generalized throttle valve area (control)
t = time
ud = in� nitesimal throttle valve area disturbance
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V = constant characterizing the plenum volume
x1 = perturbation in U , measured from the stall

inception point, Eq. (16)
x2 = perturbation in D P , measured from the stall

inception point, Eq. (16)
x3 = perturbation in A, measured from the stall

inception point, Eq. (16)
y3 = transformed state, see Eq. (24)
a i , b , c i = auxiliary constants (i =1, 2) de� ned in Eqs. (54)

and (55)
D P = pressure rise across the compressor cavity
d i f j j = functions representinghigher-order terms,

Eqs. (18–20) and (25–27)
d i g j j = functions representinghigher-order terms,

Eqs. (51–53)
g , l , m = coef� cients of characteristic equation, Eqs. (39)

and (66)
h = azimuth angle
k = characteristic equation variable, Eqs. (39), (65),

and (66)
n i = nondimensionalvariables corresponding to

xi (for i = 1, 2, 3), Eqs. (49) and (50)
s = nondimensional time, Eq. (49)
U = circumferentiallyaveraged axial � ow speed

through the compressor cavity, Eq. (5)
u = axial velocity component of � ow through the

compressor cavity
W = compressor blade aerodynamic force characteristic

Subscripts

e = equilibrium state other than the stall inception point
W 0 , etc. = derivatives of W ( u ) with respect to u
0 = equilibrium state at the stall inception point

I. Introduction

C OMPRESSORS are routinely used in processes involving
pressurized � uids. In axial compressors the kinetic energy of
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a set of rotating airfoils is imparted to the � uid moving parallel to
the rotation axis. Certain aerodynamic instabilities in compression
systems manifest themselves as the phenomenonof compressor ro-
tating stall (RS). This is a two-dimensional � ow oscillation that in-
volves a circumferentially rotating partial � ow blockage. It results
in a loss of compression system performance and operating ef� -
ciency. The conventionalapproach of addressing RS is to constrain
compressor operation to a stable region at a safe margin from the
stall inception point (SIP). This represents a loss of opportunity of
compressor performance.Recent approachesare aimed at reducing
or eliminating this stall margin through the use of active control.

Most recent active control strategies1,2 are based on low-order
approximations of the Moore–Greitzer model3,4 (MG). This con-
sists of a set of nonlinearpartial differentialequationswith periodic
boundary conditions. Using a � rst-term Galerkin approximation of
MG, previous studies5,6 have established a qualitative match be-
tweendynamicstructureandexperimentalresults.Nonlinearcontrol
schemes with control proportionalto the squareof the RS amplitude
have been proposed and analyzed, theoretically,7 numerically8 and
experimentally9 by combining nonlinear dynamics and bifurcation
theory.10,11 In Ref. 7, a control law with linear terms, in addition to
quadraticand cubic terms, has been initially assumed in the general
development; the coef� cients of the linear terms have been taken as
zero to facilitate the subsequent stability analysis. In particular, to
our knowledge,a detailedinvestigationof the effect of more general
control laws on the local stability of the SIP so far has not been car-
ried out in a systematic way. This study is aimed at � lling this void
by consideringa general representationof RS feedbackcontrol to be
proportional to a nonnegative power of RS amplitude. Section VII
supplies a quick review of all of the results shown in this paper.

II. Compressor Model
The model that we examine, giving rise to the RS instability, is

the � rst-term Galerkin approximation of the MG.3 We will refer to
it simply as the MG. It is described by

dU

dt
=

1

2p m

2p

0

W ( U + A sin h ) dh ¡
D P

m
(1)

d( D P)

dt
=

1
V

U ¡ S
p

D P (2)

dA

dt
=

M

2p

2p

0

W ( U + A sin h ) sin h dh (3)

These equations are based on several assumptions and approxi-
mations. At the compressor cavity (see Fig. 1) the Mach number is
assumed to be low, andso the air� ow is modeledas incompressible.3

Compressibilityeffectsare taken into accountat the plenum.3 At the
cavity the � ow is further assumed to be purely axial, but not nec-
essarily uniform.3 It is described by an axial velocity component
u (h , t ) that varies along the circumference. The � rst harmonic of
u (h , t ) with respect to a properly chosen reference frame3 is given
by

u (h , t) = U (t ) + A(t ) sin h (4)

where U is the average value of u along the circumference,

U (t ) =
1

2 p

2 p

0

u (h , t ) dh (5)

Fig. 1 Schematic model of a compressor.

and A is the amplitude of the velocity perturbation due to the RS.
From Eq. (3), zero A at any time implies zero A at all times. There-
fore, as A evolves in time, it can never change sign. It can then
always be taken as nonnegative. The aerodynamic force per unit
cross-sectionalarea of the cavity, developed by the blades, is3

F( U , A) =
1

2 p

2 p

0

W ( U + A sin h ) dh (6)

where W ( u ) is the compressorblade aerodynamicforce characteris-
tic. The acceleration the air experiences in the cavity is equal to the
difference between the force per unit cross-sectionalarea F( U , A)
and the pressure rise D P across the cavity,dividedby a characteris-
tic positive constant m representing the mass of the air enclosed in
the cavity. This leads to Eq. (1). The rate of change of D P is � xed
by the balance between the � ow incoming to the plenum from the
cavity and the � ow outgoing from the plenum through the throttle.
A parabolic throttle characteristic then implies Eq. (2). V is a pos-
itive constant characterizing the plenum volume, and S represents
a generalized throttle valve area. Finally, Eq. (3), characterized by
the integral

G( U , A) =
1

2p

2p

0

W ( U + A sin h ) sin h dh (7)

is just a prediction of the MG3 concerning the dynamics of the RS
amplitude. M in Eq. (3) denotes a positive constant that depends on
compressor system parameters such as geometry, etc.

III. Operation at or near the SIP
From now on, S will play the role of a control variable. Figure 2

shows qualitatively,in the planeof D P , U , the locusof equilibriafor
a typical compressor model, for constant S. Setting the right-hand
sides of Eqs. (1) and (3) to zero results in the branches abdsghr and
bcfdlkes. The � rst is the unstalled branch of equilibria (USB). On
it, A is zero. The second is the stalled branch of equilibria (SB).
On it, A is nonzero. Setting the right-hand side of Eq. (2) to zero,
with constant S, results in a parabolic throttle characteristic. Sev-
eral such characteristics,correspondingto differentvalues of S, are
shown in Fig. 2. The intersectionof a throttle characteristicand the
SB or USB de� nes a possible operation point. For constant S, bold
dashed lines show unstable operation points, whereas bold solid
lines show stable operation points. As S is decreased, the throttle
characteristicshifts from ohm to oegn to oksp, and the stable opera-
tion point shifts from curve h to curve g to curve s. Point s is the SIP.
Under operation with no disturbances at SIP, A is identically zero,
whereas D P is a maximum. If S is decreased beyond its SIP value
the stable operation point jumps to the SB, to the left of point k.
Thus, during operation under constant S at SIP, an arbitrarily small
disturbance in S is enough to throw the compressor into the RS

Fig. 2 Qualitative locus of equilibrium points in the D P vs U plane
for a typical compressor under no control, together with four throttle
characteristics.
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Fig. 3 Qualitative bifurcation diagram for the equilibrium values of
A vs ud under no feedback control (k = 0).

regime (point k). Decreasing S further moves the stable operation
point toward l. Increasing S moves the stableoperationpoint toward
point e and then point g, giving rise to the hysteresisloop skegs.The
aim is to vary S to stabilizethe compressorat an equilibriumpointof
Eqs. (1–3) that lies on the USB at or near the SIP. Note that varying
S does not affect the SB or USB in Fig. 2. It only affects the stabil-
ity of points on these branches (redistributing the solid and dashed
lines). The SIP will be denotedby the subscript0. It is characterized
by

W 0 ( U 0) = 0, W 0 0 ( U 0) < 0 (8)

For a steady equilibrium at SIP the right-hand sides of Eqs. (1–3)
must identically equal zero,

A0 = 0, D P0 = W ( U 0), U 0 = S0 D P0 (9)

The equilibriumstates U 0, D P0, and A0 and the required control
S0 at SIP are � xed from Eqs. (8) and (9). To stabilize the compressor
at or near the SIP, we will assume that the control S is always given
by the sum

S = S0 + ud + k Ap , k ¸ 0, p > 0 (10)

where S0 is the value of S required for operation at SIP, whereas
k Ap is a feedback term that we use to render such an operation sta-
ble. The term ud represents a persistent, small, and constant throttle
disturbance, over which we have no control. Zero ud implies an
equilibrium at SIP. Small ud implies an equilibrium near the SIP.
Figure 3 shows the locus of equilibriumvalues Ae of A as a function
of ud for a typicalcompressormodel and underno feedback(k =0).
Solid bold and dashed lines indicate stable and unstable equilibria,
respectively.Point s, corresponding to ud =0, denotes the SIP. The
RS instability arises because of the jump in the stable equilibrium
of A from 0 to a � nite value as ud crosses 0. The axis A =0 rep-
resents the axisymmetric branch of equilibria (AB), characterized
by an absence of RS and axially symmetric � ow through the com-
pressor [Ae =0 and u = U e in Eq. (4)]. The branch secb represents
the nonaxisymmetric branch of equilibria (NAB) for which RS is
present. From now on the AB or NAB will always refer to the plane
of A vs ud , whereas the SB or USB will always refer to the plane of
D P vs U . We may use these terms interchangeablywhen no danger
of confusion is present. We will present a complete, local stability
analysis of the SIP and the neighboring equilibria on the USB and
SB for the full system of Eqs. (1–3), under a control S given by
Eq. (10), with in� nitesimally small ud .

IV. Integral-Free Form for the MG Model3

We start by eliminating the variable h and expressing the inte-
grals in Eqs. (6) and (7) as an in� nite series. This greatly facilitates
all of the subsequent analysis. Practically, it can be accomplished
most ef� ciently using the contour integration method of complex
analysis.12 Thus, it is shown in Appendix A that, based on some
mild smoothness assumptions on the function W , the two Moore–

Greitzer3 integrals [Eqs. (6) and (7)], are equal to

F( U , A) =
1

j = 0

W 2j ( U )

( j !)2

A

2

2 j

(11)

G( U , A) =
1

j = 1

j W 2 j ¡ 1( U )
( j !)2

A

2

2j ¡ 1

(12)

Using these expressionsand the control S of Eq. (10), the system of
Eqs. (1–3) can be rewritten as

d U

dt
= ¡

D P

m
+

1
m

1

j = 0

W 2 j ( U )

( j !)2

A

2

2j

(13)

d( D P)

dt
=

1
V

U ¡ S0 + ud + k Ap
p

D P (14)

dA

dt
= M

1

j = 1

j W 2 j ¡ 1( U )

( j !)2

A

2

2j ¡ 1

(15)

Equations (13–15) are completely equivalent to Eqs. (1–3) and
(10). Previous studies have implicitly imposed smoothness proper-
ties on W ( u ) by working with speci� c functional forms. By far the
most common of thesehas been a cubic polynomial.Thus, Eqs. (11)
and (12) represent a direct generalization on all such results. The
behavior of the MG about the SIP becomes very transparent under
Eqs. (13–15).

V. Behavior About the SIP
Let x1, x2 , and x3 be perturbations in the states of the system

of Eqs. (13–15), measured from their corresponding equilibrium
values at the SIP [see Eqs. (8) and (9)]. Explicitly,

U = U 0 + x1 , D P = D P0 + x2, A = x3 (16)

The control S [see Eq. (10)] can then be written as

S = S0 + ud + kx p
3 , k ¸ 0, p > 0 (17)

Using these perturbations,rather than the original states, and tak-
ing the equilibriumconditions[Eqs. (8) and (9)] into account, it can
be shownthat the system of Eqs. (13–15) can be written equivalently
as

dx1

dt
= ¡ a1x2 ¡ a2x2

1 ¡ a3x2
3 + d 3 f1(x1, x3) (18)

dx2

dt
= b1x1 ¡ b2x2 ¡ ud + kx p

3 b3 ¡ d 1 f21(x2) + d 2 f22(x2)

(19)
dx3

dt
= x3 ¡ c1x1 + c2x2

3 + c3x2
1 + d 3 f3(x1 , x3) (20)

where ai , bi , and ci are constants de� ned as

a1 =
1
m

, a2 =
j W 0 0 ( U 0) j

2m
, a3 =

j W 0 0 ( U 0) j
4m

(21)

b1 =
1
V

, b2 =
S2

0

2V U 0
, b3 =

U 0

V S0

(22)

c1 =
M j W 0 0 ( U 0) j

2
, c2 =

M W 0 0 0 ( U 0)
16

, c3 = 4c2 (23)

The functions d 3 f1 and d 3 f3 in Eqs. (18) and (20) represent an
in� nite summation of terms in x1 and x3 that are of order three or
higher.Similarly, the functions d 1 f21 and d 2 f22 in Eq. (19) represent
an in� nite summation of terms in x2 that are of order one and two or
higher, respectively.For the local stability analysis of Secs. VI–IX,
we need only the order of these functions but not their explicit
form. In Eqs. (18–23) we used the absolutevalue of W 0 0 ( U 0), which
happens to be strictly negative at the SIP [see Eq. (8)]. We made
no assumptions, however, about the sign of the third derivative of
W ( u ) at the SIP. Thus, we would like to stress that, with the possible
exception of c2 and c3 , all of the constants de� ned in Eqs. (21–23)
are strictly positive. In the stability analysis that follows it will be
important to remember that Eqs. (18–20) still represent the com-
plete MG, namely, they are equivalent to Eqs. (13–15), which are in
turn equivalent to Eqs. (1–3) and (10). Thus, although our stability
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analysis is a local one, our results will be valid for the full MG and
not for any approximation of it. During our analysis we will also
need the following. First, by introducing the transformation

y3 = x p
3 , dy3 = px p ¡ 1

3 dx3 (24)

the system of Eqs. (18–20) can be written in the equivalent form

dx1

dt
= ¡ a1x2 ¡ a2x2

1 ¡ a3 y2/ p
3 + d 3 f1 x1, y1/ p

3 (25)

dx2

dt
= b1x1 ¡ b2x2 ¡ (ud + ky3) b3 ¡ d 1 f21(x2) + d 2 f22(x2)

(26)
dy3

dt
= py3 ¡ c1x1 + c2 y2/ p

3 + c3x2
1 + d 3 f3 x1 , y1/ p

3 (27)

We will need this version of the MG whenever we linearize about
an equilibrium with 0 < p ·1. Second, from Eq. (20), if x3 is zero
at any time, then x3 must be identicallyzero in ¡ 1 < t < 1 . Thus,
1) the trajectory of the system of Eqs. (18–20) cannot cross over
the x3 =0 plane, so that with no loss of generality x3 can always
be taken as nonnegative,and 2) if x3 is nonzero at any time, then in
the ensuing time evolution of the system of Eqs. (18–20), x3 can go
to zero only asymptoticallywith t . Similar statements also apply to
Eqs. (25–27).

VI. Branching of Equilibria from the SIP
We now examine how the equilibria bifurcate from the SIP when

the control S [see Eq. (17)] containsa nonzero,in� nitesimal, throttle
disturbance ud . The equilibrium is at the SIP only when ud is zero.
When ud is nonzero, the equilibrium is determined by setting the
right-hand sides of Eqs. (18–20) equal to zero. Let x1e , x2e , and
x3e denote the equilibrium values of x1 , x2, and x3, respectively,
when ud is nonzero. Then, from Eq. (20), we see that there are two
possibilities.The � rst corresponds to setting x3e = 0, in which case,
a simple inspection of the right-hand sides of Eqs. (18) and (19)
reveals that for very small ud the equilibrium is given by

x1e = b3ud /b1 + u2
d , x2e = ¡ a2x2

1e a1 + x3
1e

x3e = 0 (28)

where, ( ) denotes the (higher-) order symbol. This results in the
AB (see Fig. 3). The secondpossibility leads to the NAB (see Fig. 3)
and arises when

¡ c1x1e + c2x2
3e + c3x2

1e + d 3 f3(x1e, x3e) = 0 (29)

In this case, the right-hand side of Eq. (20) is again zero. For in-
� nitesimally small ud , Eq. (29) balances if

x1e = c2x2
3e c1 + x3

3e (30)

From Eq. (30) and the right-hand side of Eq. (18), a similar inspec-
tion shows that along such equilibria

x2e = ¡ a3x2
3e a1 + x3

3e (31)

Combining Eqs. (30) and (31) with the fact that for such equilibria
the right-hand-sideof Eq. (19) must also be zero, we conclude that
for very small ud the NAB is locally � xed by

ud = ¡ kx p
3e + kcritx

2
3e + x p + 1

3e , x3
3e (32)

where kcrit is just a constant given by

kcrit = (1/b3)(b1c2 /c1 + b2a3 /a1) (33)

Using Eqs. (21–23), we � nd that kcrit can be written in terms of more
direct compressor parameters as

kcrit =
S0

8 U 0 j W 0 0 ( U 0) j
W 0 0 0 ( U 0) +

S2
0 [ W 0 0 ( U 0)]2

U 0

(34)

Depending on k and p, there can be three types of NAB (bifurca-
tions) for arbitrarily small ud . These, as well as the AB, are shown
qualitativelyon a x3e vs ud diagram in Figs. 4–7. Dashed lines show
unstable equilibria, whereas solid lines show asymptotically stable
equilibria. When k =0, or when k > 0 and p > 2, feedback has no
effect on the branchingof equilibria. In this case, Eq. (32) becomes

ud = kcritx
2
3e + x3

3e (35)

In practice, for a compressor exhibiting the RS instability, kcrit

is strictly positive. Then, as shown in Fig. 4, the bifurcation at SIP
is of the subcritical pitchfork type. When k > 0 and p =2, namely,
for quadratic feedback, the qualitative features of the NAB depend
strongly on whether k > kcrit or k < kcrit ,

ud = ¡ (k ¡ kcrit)x
2
3e + x3

3e (36)

In this case, the bifurcation is of the subcritical pitchfork type for
k < kcrit (same as in Fig. 4) and of the supercritical pitchfork type
when k > kcrit (as in Fig. 5). For k = kcrit , higher-order terms must
be examined to determine the type of the bifurcation. We will set

Fig. 4 Qualitative bifurcation diagram near the SIP under no feed-
back control (k = 0).

Fig. 5 Qualitative bifurcation diagram near the SIP under quadratic
( p = 2) feedback with k > kcrit .

Fig. 6 Qualitativebifurcationdiagramnear the SIP under linear feed-
back (k > 0 and p = 1).

Fig. 7 Qualitative bifurcation diagram near the SIP under sublinear
feedback (k > 0 and 0 < p < 1).
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aside that case because it is practically uninteresting. When k > 0
and 0 < p < 2, the quadratic term in Eq. (32) is subdominant, and
the bifurcation is locally described by

ud = ¡ kx p
3e + x p + 1

3e , x2
3e (37)

Now, for k > 0 and 1 < p < 2, the bifurcation is still of the su-
percritical pitchfork type, and the NAB is perpendicular to the AB
at SIP ( just as in Fig. 5). For k > 0 and p =1, on the other hand,
the bifurcation changes to a transcritical one, as shown in Fig. 6.
Finally, for k > 0 and 0 < p < 1, the NAB is tangent to the AB at SIP
as shown in Fig. 7. In this case, althoughdifferent than that in Fig. 6,
the bifurcation is still of the transcritical type. The local stability of
equilibria shown in Figs. 4–7 will be analyzed in Sec. IX.

VII. End Result
Before proceeding further we will provide a useful road map by

collecting together and stating clearly all of the details that we will
prove in Secs. VIII and IX. These are valid for the full MG and for
an arbitrary compressor map [Eqs. (1–3) and (10), or Eqs. (13–15),
or Eqs. (18–20), or Eqs. (25–27)]. The critical gain of the system,
kcrit , is de� ned in Eqs. (33) and (34). By feedback we refer to the
control term k A p . The � rst four points are valid under no persistent
throttle disturbance (ud = 0) and pertain to the local stability of the
SIP.

1) When the feedback is off (k = 0), the SIP for the corresponding
uncontrolled system is locally asymptotically stable if kcrit < 0 and
unstable if kcrit > 0 (Sec. VIII.A).

2) Under quadratic feedback (k > 0 and p =2), the SIP is
locally asymptotically stable if k > kcrit and unstable if k < kcrit

(Sec. VIII.B).
3)Feedbackcontrolwith k > 0 and p > 2 hasno effecton the local

stability of the SIP. Under such control the SIP is locally asymptot-
ically stable if kcrit < 0 and unstable if kcrit > 0 (Sec. VIII.C).

4) Under feedback control with k > 0 and 0 < p < 2, the SIP is
locally asymptotically stable for any value of k (Sec. VIII.D).

The next � ve points are valid for operation under a persistent,
in� nitesimally small, throttle disturbance ud , and they pertain to
the local stability of the axisymmetric (AB) and nonaxisymmetric
(NAB) branchesbifurcatingfrom the SIP. U e here refers to the value
of U at the correspondingequilibrium.

5) Throttle feedback control has no effect on the local stabil-
ity of an equilibrium lying on the AB. Such an equilibrium is lo-
cally asymptoticallystable if W 0 ( U e) < 0 andunstableif W 0 ( U e) > 0
(Sec. IX.A).

6) For the uncontrolled system (k = 0) an equilibrium lying on
the NAB is locally asymptotically stable if kcrit < 0 and unstable if
kcrit > 0 (Sec.IX.B).

7) Under quadratic feedback (k > 0 and p = 2), an equilibrium
lying on the NAB is locally asymptotically stable if k > kcrit and
unstable if k < kcrit (Sec. IX.B).

8)Feedbackcontrolwith k > 0 and p > 2 hasno effecton the local
stability of an equilibrium lying on the NAB. Under such control
such an equilibrium is locally asymptotically stable if kcrit < 0 and
unstable if kcrit > 0 (Sec. IX.B).

9) Under feedback control with k > 0 and 0 < p < 2, an equilib-
rium lying on the NAB is locally asymptoticallystable for any value
of k. Moreover, for 0 < p < 1, the NAB is tangent to the AB at the
SIP. Thus, in this case, the NAB locally mimics the stable part of
the AB at the SIP (Sec. IX.B).

Note that points 1, 5, and 6 are well known, whereas points 2 and
7 have been partially addressed and uncovered in previous work.7,8

Points 3, 4, 8, and 9 on the other hand represent our primary contri-
bution.

VIII. Stability for Operation at the SIP
We will � rst assume that in Eqs. (18–20) ud is zero and perform

a complete (k ¸ 0 and p > 0) local stability analysis for the SIP. For
the uncontrolledsystem (k =0), and fork > 0 and p ¸ 2, we will use
the center manifold (CM) theory. For k > 0 and 0 < p < 2, on the
other hand, we will resort to Lyapunov’s direct method. The reader

is referred to Verhulst,13 Perko,14 and Guckenheimer and Holmes15

for the underlying theory.
Let us start by linearizing the MG about the SIP. We must

be careful to distinguish between two cases. If p > 1, then we lin-
earize the system of Eqs. (18–20), whereas if 0 < p ·1, then we
linearize the equivalentsystem of Eqs. (25–27). We � nd that in both
cases the linearized system is governed by a Jacobian matrix given
by

J0 =

0 ¡ a1 0
b1 ¡ b2 J230

0 0 0

(38)

where the term J230 =0 when p > 1 and J230 = ¡ kb3 when
0 < p ·1. Both cases lead to the characteristic equation

k 3 + g 0 k 2 + l 0 k + m 0 = 0 (39)

whose coef� cients are given by

g 0 = b2 , l 0 = a1b1 , m 0 = 0 (40)

Because m 0 = 0, whereas g 0 and l 0 are strictlypositive,two eigen-
values have negative real parts and one eigenvalueis zero. Thus, the
linearizedapproximationdoes not determine the stabilityof the full
nonlinear system. Because no eigenvaluehas a strictly positive real
part, the � ow of the system of Eqs. (18–20) exhibits stable behavior
near the SIP, except perhaps in the CM.13 ¡ 15 In this case the CM is
one dimensional. If we can � nd a local approximation for the CM,
valid near the SIP, we only need to study the � ow locally in the CM
to study the local stability of the SIP.13 ¡ 15 For k =0 (no feedback)
or k > 0 and p ¸ 2, this is relatively straightforward. With no loss
of generality the CM is taken as

x1 = h(x3) = h1(x3) + x p
3 h2(x3) (41)

x2 = w(x3) = w1(x3) + x p
3 w2(x3) (42)

where h, w , h1 , h2 , w1, and w2 are functions of x3, with h(0) =
w (0) =0, to be determinedso that Eqs. (18) and (19) are identically
satis� ed. To uncover the local behavior of these functionsabout the
SIP, we assume power series expansions,substitute in Eqs. (18) and
(19), use Eq. (20) for the time derivative of x3, and match terms.
This works only when the CM is analytic at SIP, namely,13 ¡ 15 only
when such an expansion about the SIP exists.

A. Stability of the Uncontrolled System (k = 0)

In this case, the feedback is off and the CM near the SIP is ap-
proximated as

x1 = h(x3) = ¡ (b2a3 / b1a1)x
2
3 + x3

3 (43)

x2 = w (x3) = ¡ (a3 /a1)x2
3 + x3

3 (44)

The local behavior of the � ow in the CM is obtained by substituting
from Eqs. (43) and (44) into Eq. (20),

dx3

dt
=

c1b3kcrit

b1
x3

3 + x4
3 (45)

where kcrit was de� ned in Eq. (33). The coef� cient c1b3 / b1 is strictly
positive,and so the SIP for the uncontrolledsystemis locallyasymp-
toticallystable if kcrit < 0 and unstableif kcrit > 0. This provespoint 1
of Sec. VII.

B. Stability Under Quadratic Feedback (k >0 and p = 2)

In this case, the CM near the SIP is found as

x1 = h(x3) = (b3k /b1 ¡ b2a3 /b1a1)x2
3 + x3

3 (46)

x2 = w (x3) = ¡ (a3 /a1)x2
3 + x3

3 (47)
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whereas the � ow in the CM near the SIP obeys

dx3

dt
= ¡

c1b3

b1
(k ¡ kcrit)x

3
3 + x4

3 (48)

Thus, the SIP is locallyasymptoticallystable if k > kcrit and unstable
if k < kcrit . This proves point 2 of Sec. VII.

C. Stability for k >0 and p >2: Control Effectiveness

In this case, feedbackhas no effect on the localstabilityof the SIP.
The CM is given by expressions identical to Eqs. (43) and (44). The
difference is that the higher-order terms are of order p if 2 < p < 3.
The � ow in the CM is locally described by a differential equation
identical to Eq. (45), the differenceagainbeing that the higher-order
terms are of order p + 1 if 2 < p < 3. Thus, under feedback with
k > 0 and p > 2, the SIP is locally asymptotically stable if kcrit < 0
and unstable if kcrit > 0. This proves point 3 of Sec. VII.

D. Stability for k >0 and 0 < p < 2

In this case we will use Lyapunov’s direct method rather than the
CM theory to show the stability of the SIP. To ease the analysis, we
� rst transform from the variables x1, x2 , x3 , and t to a new set n 1,
n 2 , n 3 , and s ,

s = b2t, n 1 = ( pc1 / b2)x1 (49)

n 2 = pa1c1 b2
2 x2, n 3 = pka1b3c1 b3

2 x p
3 (50)

Then Eqs. (18–20) assume the following equivalent form:

dn 1

ds
= ¡ n 2 ¡ a 1 n

2
1 ¡ a 2 n

2/ p
3 + d 3g1 n 1, n

1/ p
3 (51)

dn 2

ds
= b n 1 ¡ n 2 ¡ n 3 + n 3 d 1g21( n 2) + d 2g22(n 2) (52)

dn 3

ds
= n 3 ¡ n 1 + c 1 n

2/ p
3 + c 2 n

2
1 + d 3g3 n 1, n

1/ p
3 (53)

where the constants a 1, a 2 , b , c 1 , and c 2 are de� ned as

a 1 =
a2

pc1
, a 2 =

a p
3 b6 ¡ 2p

2

p2 ¡ pk2a2
1b2

3c2 ¡ p
1

1/ p

(54)

b =
a1b1

b2
2

, c 1 =
b6 ¡ p

2 cp
2

p2 ¡ pk2a2
1 b2

3c2
1

1/ p

, c 2 =
b2c3

pc2
1

(55)

The d g terms in Eqs. (51–53)correspondto the d f terms of Eqs. (18–

20). For 0 < p < 2, all of these terms are of higher order in the
variables n 1, n 2 , and n 3 than the terms shown explicitly. Consider
now a function L , de� ned as

L( n 1 , n 2 , n 3) = n 3 +
1

2

2

i = 1

Di n 1 +
n 2

2
+ Ci n 3

2

(56)

where Di and Ci , i = 1, 2, are constants given by

D1 =
¡ 1 +

p
1 + 4 b

4
, C1 =

¡ 4b ¡ 3 + 3
p

1 + 4 b

4b
p

1 + 4 b

(57)

D2 =
¡ 1 ¡

p
1 + 4 b

4
, C2 =

4 b + 3 + 3
p

1 + 4 b

4b
p

1 + 4 b
(58)

The time derivativeof L , alonga trajectoryof the systemofEqs. (51–

53), can be found by differentiating the right-hand side of Eq. (56)

with respect to s and by substituting from Eqs. (51–53). The result
is

dL

ds
= ¡

b

4
n 2

1 ¡
1

4
n 2

2 ¡
3

4b
n 2

3 + HOT (59)

where with HOT we refer to terms that are (for 0 < p < 2) of higher
order than the second. Note that the d g terms in Eqs. (51–53) con-
tribute only to the HOT part of dL / d s . Hence, they have no effect
on the local behaviorof dL / d s near the SIP. From Eq. (59) this local
behavior is seen to be rather simple: Because b is strictly positive,
dL /d s is locally negativede� nite about the SIP. More precisely, the
following may be said about L

F1) L( n 1, n 2, n 3) is strictly positive for strictly positive n 3 and
positive de� nite for n 3 = 0.

F2) For L0 > 0 suf� ciently small, in the ( n 1, n 2, n 3) state space
there exists a compact region B de� ned by L( n 1 , n 2 , n 3) ·L0 and
n 3 ¸ 0, so that dL /d s is zero at ( n 1 , n 2 , n 3) = (0, 0, 0) and strictly
negative at any other point in B. To this we add the details on x3

supplied in Sec. V, given now in terms of the variable n 3 .
F3) From Eq. (53), if n 3 is zero at any time, then n 3 must be iden-

tically zero in ¡ 1 < s < 1 . Namely, the trajectory of the system
of Eqs. (51–53) cannot cross over n 3 =0, and so with no loss of
generality, n 3 ¸ 0 always.

F4) If n 3 > 0 at any s , then in the ensuing evolution of Eqs. (51–

53) n 3 can go to zero only asymptoticallywith s .
We can now show that the SIP is locally asymptotically stable.

Consider the behavior, of any trajectory of the system of Eqs. (51–

53), as s tends to in� nity, that starts from within the region B (the
existence of which is guaranteed by item F2), with a nonnegative
n 3 . Then from item F3, only one among the following is true:

1) The starting value of n 3 is zero.
2) The starting value of n 3 is strictly positive.
If item 1 is true, then from item F3, n 3 stays identically at zero,

whereas from items F1 and F2 the rest of the system asymptotically
goes to the SIP. If item 2 is true, then from items F3 and F4 n 3 stays
strictly positive for any � nite s . In this case, from items F1 and
F2 the whole system asymptotically goes to the SIP. Therefore, for
0 < p < 2 the SIP is locally asymptotically stable for any strictly
positive value of k. This proves point 4 of Sec. VII.

IX. Stability Under a Persistent Throttle Disturbance
We will now perform a complete (k ¸ 0 and p > 0) local stability

analysis for the equilibria on the AB and NAB near the SIP (small
ud ). As in Sec. VI, we denote all of these equilibria using the sub-
script e. We will use linearizationof the MG about such equilibria.
The characteristic equation for the linearized system will have no
eigenvalues lying on the imaginary axis, and so such linearization
will be suf� cient to determine stability.

A. Stability of the Axisymmetric Branch (AB)

From Eqs. (13–15) the conditions for an equilibrium on the AB
are

Ae = 0, D Pe = W (U e), U e = Se D Pe , Se = S0 + ud

(60)

We must distinguish between two cases. When p > 1, we linearize
Eqs. (13–15) directly about the equilibrium. When, on the other
hand, 0 < p ·1, then the feedback term k A p in Eq. (14) cannot
be linearized about Ae =0. In this case, we use the transformation
E = A p and linearize the transformed system,

d U

dt
= ¡

D P

m
+

1
m

1

j = 0

W 2 j ( U )
( j !)2

E1/ p

2

2j

(61)

d( D P)
dt

=
1
V

U ¡ (S0 + ud + kE)
p

D P (62)

dE

dt
= pME

1

j = 1

j W 2 j ¡ 1( U )
2( j !)2

E 1/ p

2

2j ¡ 2

(63)
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about the equilibrium. In both cases the Jacobian matrix associated
with the linearized system is expressed as

Je =

W 0 ( U e) / m ¡ (1/ m) 0

1/ V ¡ S2
e 2V U e J23e

0 0 J33e

(64)

where J23e = 0 when p > 1 and J23e = ¡ (k U e / V Se) when
0 < p ·1. Also, J33e = M W 0 ( U e) / 2 when p > 1, and J33e =
pM W 0 ( U e)/ 2 when 0 < p ·1. The associated characteristic equa-
tion has a root at k = J33e . Its other two roots are found from

k 2 +
S2

e

2V U e
¡

W 0 ( U e)
m

k +
1

mV
¡

S2
e W 0 ( U e)

2mV U e
= 0 (65)

For W 0 ( U e) < 0, all three roots have strictly negative real parts. For
W 0 ( U e) > 0, at least one root has a strictly positive real part. More-
over, this condition does not depend on k. This proves point 5 of
Sec. VII.

B. Stability of the Nonaxisymmetric Branch (NAB)

To determine the stability of the NAB we proceed as follows.
The linearized approximation of the MG about an equilibrium on
the NAB is governed by a Jacobian matrix Je and a characteristic
equation:

k 3 + g e k
2 + l e k + m e = 0 (66)

The coef� cients of this equationare continuousfunctions of ud . For
ud =0, the equilibriumis at the SIP, and these coef� cients are given
by Eq. (40). For in� nitesimally small ud , the same coef� cients are
perturbed to

g e = b2 + d g , l e = a1b1 + d l , m e = d m (67)

with d g , d l , and d m denoting in� nitesimal perturbations. Because
b2 > 0 and a1b1 > 0, it follows that g e > 0 and l e > 0 for suf� ciently
small ud . The � rst column of the corresponding Routh table (see
Ref. 16) implies that the necessary and suf� cient conditions for sta-
bility are g e > 0 and m e > 0 and ( g e l e ¡ m e) / g e > 0. Because g e > 0
and l e > 0 and m e is in� nitesimal, these conditions are satis� ed if
and only if m e > 0. Thus, we only need to check the sign of m e.
Note that m e is just the negative of the determinant of the Jacobian
matrix Je,

m e = ¡ det(Je) (68)

To obtaindet(Je )writeEqs. (13–15) by condensingtheMG integrals
[see Eqs. (11) and (12)]:

d U

dt
=

1
m

[F( U , A) ¡ D P] (69)

d( D P)
dt

=
1
V

U ¡ S0 + ud + k A p
p

D P (70)

dA

dt
= MG( U , A) (71)

An equilibrium on the NAB satis� es

G( U e, Ae) = 0, D Pe = F( U e , Ae), U e = Se D Pe

(72)

Se = S0 + ud + k A p
e (73)

For compatibility with the linearization about the SIP [Eqs. (38–

40)], we have to distinguishbetween the cases p > 1 and 0 < p ·1.

When p > 1, linearizationof Eqs. (69–71)aboutsuchanequilibrium
results in

Je =

1
m

@F

@U
e

¡
1
m

1
m

@F

@A
e

1
V

¡
S2

e

2V U e
¡

kpA p ¡ 1
e U e

V Se

M
@G

@U
e

0 M
@G

@A
e

(74)

When 0 < p ·1, Eqs. (69–71) are transformed through E = A p .
Linearization then yields a similar Jacobian that we denote by Ie . It
can be checked that Je and Ie differ only in their third column. The
third column of Ie is equal to the third column of Je , multiplied by
the factor

dA

dE
e

=
A1 ¡ p

e

p
(75)

Because this factor is strictly positive, the determinantsof Je and Ie

have the same sign.Thus, we only needone of them to determinethe
sign of m e . Insteadof m e we will check the sign of a similar constant,
Ne , de� ned as

Ne =
2mV Se U e

M
m e = ¡

2mV Se U e

M
det(Je) (76)

Clearly, Ne and m e have the same sign. Expanding the determinant
of Je in Eq. (74) we obtain

Ne = (FU G A ¡ FAG U )S3
e ¡ 2pkA p ¡ 1

e G U U 2
e ¡ 2G A Se U e (77)

where

FU =
@F

@U
e

, G A =
@G

@A
e

FA = G U =
@F

@A
e

=
@G

@U
e

(78)

That FA = G U is shown in Appendix B. For an equilibrium on the
NAB, Eqs. (16) and (17) read

U e = U 0 + x1e , D Pe = D P0 + x2e , Ae = x3e (79)

Se = S0 + ud + kx p
3e (80)

where x1e , x2e , x3e, and ud are not independent, but vary according
to Eqs. (30–32). If we expand Ne [Eq. (77)] in x3e about the SIP,
the lowest-order terms of such an expansion will reveal the sign of
Ne for in� nitesimally small ud . The partial derivatives of F and G
with respect to A and U expand about the SIP as

FU =
@F

@U
e

= ¡ j W 0 0 ( U 0) j x1e +
W 0 0 0 ( U 0)

4
x2

3e + HOT (81)

G A =
@G

@A
e

= ¡
j W 0 0 ( U 0) j

2
x1e +

3 W 0 0 0 ( U 0)
16

x2
3e + HOT (82)

FA = G U =
@F

@A
e

=
@G

@U
e

= ¡
j W 0 0 ( U 0) j

2
x3e + HOT (83)

On the NAB, x1e and x3e are related by Eq. (30). By substitution
into Eqs. (81–83), we � nd

FU G A ¡ FAG U = ¡ [ W 0 0 ( U 0)]2 4 x2
3e + HOT (84)
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Finally, from Eqs. (79), (80), (84), and (77), for an equilibrium on
the NAB arbitrarily close to the SIP, Ne is

Ne = 2 j W 0 0 ( U 0) j U 2
0 ( pk /2)x p

3e ¡ kcritx
2
3e + HOT (85)

Here kcrit is the constant de� ned in Eqs. (33) and (34). Recalling
that an equilibriumon the NAB arbitrarilyclose to the SIP is locally
asymptotically stable if and only if Ne > 0, we have, depending on
k, p, four possible cases.

1) For the uncontrolled system (k =0), Ne becomes

Ne = ¡ 2 j W 0 0 ( U 0) j U 2
0kcritx

2
3e + HOT (86)

Locally Ne has opposite sign than kcrit . Thus, in this case, an equi-
librium lying on the NAB is locally asymptoticallystable if kcrit < 0
and unstable if kcrit > 0. This proves point 6 of Sec.VII.

2) Under quadratic feedback (k > 0 and p =2), Ne becomes

Ne = 2 j W 0 0 ( U 0) j U 2
0(k ¡ kcrit)x

2
3e + HOT (87)

In this case an equilibrium lying on the NAB is locally asymptoti-
cally stable if k > kcrit and unstable if k < kcrit . This proves point 7
of Sec. VII.

3) When k > 0 and p > 2, locally the feedback term has no effect
on Ne . Namely, Ne behaves as in Eq. (86). Under such control, an
equilibrium lying on the NAB is locally asymptotically stable if
kcrit < 0 and unstable if kcrit > 0. This proves point 8 of Sec. VII.

4) When k > 0 and 0 < p < 2, then Ne behaves as

Ne = j W 0 0 ( U 0) j U 2
0 pkx p

3e + HOT (88)

Under such control an equilibrium lying on the NAB is locally
asymptoticallystable for any value of k. Combined with Fig. 7 this
proves point 9 of Sec. VII.

X. Unifying Geometric Explanation
The results of Sec. VII can be uni� ed under a single geometric

picture. Recall (Sec. III) that varying S does not affect the shape of
the USB or SB (Fig. 2). These are � xed by the right-hand sides of
Eqs. (1) and (3). Varying S does affect, however, the equilibrium
implied by Eq. (2). For a control of the type we considered [see
Eqs. (10) and (17)], this condition reads

U 0 + x1e = S0 + ud + kx p
3e D P0 + x2e (89)

In the absence of RS, x3e is identically zero and the operating point
lies on the USB. From Sec. IX.A, both the shape and the stability
of points (other than points b and s in Fig. 2) on the USB remains
unchanged by any type of throttle control. Thus, locally, near the
SIP, the USB always looks like the branch usv in Fig. 8 [see second
of Eqs. (28)]. The SB, on the other hand, locally, is just a straight
line, which from Eqs. (30) and (31) is found as

Fig. 8 Qualitative locus of unstalled (usv) and stalled (st) branches of
equilibria near the SIP, together with three different types (sx, sy, and
sz) of feedback throttle characteristics.

x1e = ¡
a1c2

a3c1
x2e = ¡

W 0 0 0 ( U 0)
2[ W 0 0 ( U 0)]2

x2e (90)

This is shown by the straight line st in Fig. 8. Contrary to the
USB, the stability of operating points on the SB is strongly affected
by the particular type of throttle control. Keeping � rst-order terms
in the small quantities xie and ud , locally about the SIP Eq. (89) can
be written as

x1e = S2
0 2 U 0 x2e + (k u 0 / S0)x

p
3e + ( U 0 / S0)ud (91)

For operation on the SB, one can eliminate x3e by relating it to x2e

through Eq. (31). Then, Eq. (91) becomes

x1e =
S2

0

2U 0
x2e +

2pk U 0

S0 j W 0 0 ( U 0) j p/ 2
( ¡ x2e)

p/ 2 +
U 0

S0
ud (92)

Equation (92) can be viewedas a local feedbackthrottlecharacteris-
tic (LFTC). In the x1ex2e plane for ud =0, the LFTC passes through
the SIP. When ud < 0, then the LFTC shifts to the left. Figure 8
shows the shapes of the LFTC for all cases of feedback and for
ud = 0. When p > 2, or k =0, locally, the � rst term on the right-
hand side of Eq. (92) is dominant, and the LFTC is a straight line,
such as line sx or sy. Points 1, 3, 6, and 8 of Sec. VII lead to the
stability requirement that the inclination of this line relative to the
x2e axis be less than the corresponding inclination of line st. Thus,
an LFTC of the form sx implies instability,whereas an LFTC of the
form sy implies stability. When k > 0 and p =2, the LFTC is still a
straight line, such as line sx or sy, but now the � rst two terms on the
right-hand side of Eq. (92) are of equal importance. Now, points 2
and 7 of Sec. VII lead to the same conclusion,namely, that an LFTC
of the form sx implies instability, whereas an LFTC of the form sy
implies stability. When on the other hand k > 0 and 0 < p < 2, then
only the second term on the right-hand side of Eq. (92) is locally
dominant, and the LFTC looks like the curve sz in Fig. 8. Now,
points 4 and 9 of Sec. VII imply stability for all such LFTCs. As
ud shifts in� nitesimally from ud =0 to ud < 0, the LFTCs sx, sy,
and sz in Fig. 8 shift in� nitesimally to the left. After such a shift
only the LFTCs sy and sz still intersect the local part (line st) of the
SB. This leads to a general statement connecting all of the results
of Sec. VII to the behavior of the LFTC: The feedback control law
de� ned in Eqs. (10) and (17) locally asymptotically stabilizes the
SIP and the neighboring part of the SB if and only if it results in an
LFTC for which the jump (in the D P vs U plane of equilibria) that
leads to � nite amplitude RS when S is reduced below its value at
the SIP is eliminated.The rate at which the LFTC sweeps by the SB
for decreasing, negative ud determines the shape of the NAB and
the types of the correspondingbifurcations in Figs. 4–7.

XI. Conclusions
We presented a complete, analytical, local stability analysis for

the Moore–Greitzer model of compressor rotating stall about the
stall inception point and the neighboring part of the branch of the
axisymmetricand nonaxisymmetricbifurcatedequilibria.Our anal-
ysis is valid for all throttle feedback control laws that are equal to
the rotating stall amplitude,raised to a strictly positive feedbackex-
ponent, and multiplied by a nonnegativefeedback gain. We showed
that linear feedback reshapes and stabilizes the neighboring non-
axisymmetric branch and results in unconditional local asymptotic
stability for the stall inception point. Quadratic feedback on the
other hand represents a limiting case of local control effectiveness
and at best leads to conditional local stability, that is, it renders the
stall inception point and the neighboring nonaxisymmetric branch
locally asymptoticallystable only for suf� ciently high values of the
feedback gain. Our most important result is perhaps that sublinear
feedback,that is, feedbackwith an exponentless than unity, not only
unconditionallystabilizesthe stall inceptionpoint and the neighbor-
ing nonaxisymmetric branch, but also it reshapes this branch so as
to locally mimic the stable nonaxisymmetric branch at the stall in-
ception point. These results extend and in some places contrast and
clarify previous work on this subject that has completely dismissed
such linear or sublinear feedback as a useful means of controlling
compressor rotating stall.
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Appendix A: Evaluation of the MG3 Integrals
Using Contour Integration

Consider the two integrals appearing in Eqs. (6) and (7). The
integration limits here suggest contour integration in the complex
plane along the unit cycle. Use a complex variable z, and de� ne the
transformation

z = ei h , dh =
dz

iz
, sin h =

z ¡ z ¡ 1

2i
(A1)

where i is the imaginaryunit. Then, the two integrals can be written
as

F( U , A) =
1

2p i unit circle

W U + A
z ¡ z ¡ 1

2i

dz

z
(A2)

G( U , A) =
1

2 p i unit circle

W U + A
z ¡ z ¡ 1

2i

z ¡ z ¡ 1

2i
dz

z

(A3)

De� ne two functions f (z) and g(z) by

f (z) = W U + A
z ¡ z ¡ 1

2i
(A4)

g(z) = W U + A
z ¡ z ¡ 1

2i

z ¡ z ¡ 1

2i
(A5)

If W is free of singularities, the only singular point of f (z) / z or
g(z) / z within theunit circle is z = 0. Then F and G are the residues12

of f (z)/ z and g(z) / z at z =0, respectively.The residue12 of a func-
tion H (z) at a singular point z = zs is the coef� cient of the term
1/ (z ¡ zs) in the Laurent series expansion of that function about
z = zs . By uniqueness,12 the Laurent series of H (z) / z about z = 0
is the Laurent series of H (z) about z =0, multiplied by 1/ z. Thus,
the residues of f (z) / z and g(z) / z at z =0 are the constant terms
in the Laurent series of f (z) and g(z) about z =0, respectively.To
evaluate these residues, write the ordinary Taylor series of W ( u )
about u = U . Using this series evaluate W at u = U + A sin h and
substitutefor sin h from Eq. (A1). Then, the functions f (z) and g(z)
can be written as

f (z) =
1

n = 0

W n ( U )(z ¡ z ¡ 1)n An

(2i )nn!
(A6)

g(z) =
1

n = 0

W n( U )(z ¡ z ¡ 1)n + 1 An

(2i )n + 1n!
(A7)

Superscripts denote differentiation for W and raise to power else-
where. Recall the binomial formula17

(x ¡ y)n =
n

j = 0

( ¡ 1) j n

j
xn ¡ j y j (A8)

and expand the terms in the parenthesis (for each n) as

(z ¡ z ¡ 1)n =
n

j = 0

( ¡ 1) j n

j
zn ¡ 2j (A9)

(z ¡ z ¡ 1)n + 1 =
n + 1

j = 0

( ¡ 1) j n + 1
j

zn + 1 ¡ 2j (A10)

Substituting from Eqs. (A9) and (A10) into Eqs. (A6) and (A7)
and summing the coef� cients of similar powers in z, we obtain
two series, for f (z) and g(z), for which the (integer) powers of z
vary from ¡ 1 to + 1 . By uniqueness, these are the Laurent series
of f (z) and g(z) about z =0. From Eq. (A9), a constant term is

contributed to the Laurent series for f (z) each time n is even. This
is the term for which n = 2j . It is equal to

W 2j ( U )( ¡ 1) j A2 j

(2i )2j (2j )!

2 j

j

The sum of all such terms for j = 0, 1, 2, . . . , is the residue of
f (z) / z about z =0 that in turn equals F . With17

2j

j
=

(2 j )!
j !(2 j ¡ j )!

=
(2j )!

( j !)2
(A11)

this leads to F( U , A) suppliedin Eq. (11).Similarly, fromEq. (A10),
a constant term is contributed to the Laurent series for g(z) about
z = 0 each time n + 1 is even.This is the term for which n + 1 =2 j ,
and it is equal to

W 2j ¡ 1( U )( ¡ 1) j A2 j ¡ 1

(2i )2j (2 j ¡ 1)!

2 j

j

The sum of all such terms for j = 1, 2, 3, . . . , is the residue of
g(z) / z about z =0, which in turn equals G. Through Eq. (A11) this
leads to G( U , A) supplied in Eq. (12). The series representation
of these integrals is valid as long as certain obvious smoothness
properties on W ( u ) are satis� ed.

Appendix B: Generating Function for the MG3 Integrals
The two MG integrals[Eqs. (11) and (12)] can be generatedfrom

a single function by partial differentiation.Let

Q( U , A) =
1

j = 0

W 2 j ¡ 1( U )

( j !)2

A

2

2j

(B1)

where for j = 0, characteristic W ¡ 1( U ) denotes the inde� nite inte-
gral of W ( U ). Then it is easy to show that F and G are

F( U , A) =
@Q

@U
, G( U , A) =

@Q

@A
(B2)

The partial derivativesof F and G with respect to U and A are, thus,
given by

@F

@U
=

@2 Q

@U 2
=

1

j = 0

W 2j + 1( U )

( j !)2

A

2

2j

(B3)

@G

@A
=

@2 Q

@A2
=

1

j = 1

j (2 j ¡ 1) W 2j ¡ 1( U )

2( j !)2

A

2

2j ¡ 2

(B4)

@F

@A
=

@G

@U
=

@2 Q

@U @A
=

1

j = 1

j W 2j ( U )

( j !)2

A

2

2 j ¡ 1

(B5)
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